Exam Seat No:

Enrollment No:

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013

Course Name :B.Tech Sem-I **Duration :- 3:00 Hours**

Subject Name: - Engineering Mathematics-I

Marks :70 Date : 16/12/2013

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.

(2) Use of Programmable calculator & any other electronic instrument is prohibited.

(3) Instructions written on main answer Book are strictly to be obeyed.

(4) Draw neat diagrams & figures (If necessary) at right places.

(5) Assume suitable & Perfect data if needed.

SECTION I

Q-1 (a)	Determine the region in z-plane represented by $Re(z) > 3$	01
(b)	Find polar form of complex number $z = -\sqrt{3} + i$	02
(c)	Evaluate $\lim_{x \to \pi/2} \frac{\log \sin x}{(\pi - 2x)^2}$	02
(d)	Define absolute and conditional convergence of series.	02
Q-2 (a)	(i) Use definition of differentiation to find f'(x) if $f(x) = \frac{x}{x-1}$	02
	(ii) Find the complex number z if $\arg(z+1) = \frac{\pi}{6}$ and $\arg(z-1) = \frac{2\pi}{3}$	03
(b)	(i) Test the convergence of series $\sum_{n=1}^{\infty} \frac{n^3 + 2}{2^n + 2}$	02
	(ii) Prove that $\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos n \left(\frac{\pi}{2}-\theta\right) + i \sin n \left(\frac{\pi}{2}-\theta\right)$	03
(c)	Prove that n th root of unity are in geometric progression. Also, show that their sum is zero.	04
	OR	
Q-2 (a)	(i) Solve the equation $z^2 - (5 + i)z + 8 + i = 0$	02
	(ii) Is $\operatorname{Arg}(z_1z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$? Justify.	03
(b)	(i) Test the convergence of series $\left(\frac{1}{2}\right)^{1^2} + \left(\frac{2}{3}\right)^{2^2} + \left(\frac{3}{4}\right)^{3^2} + \cdots$	02
	(ii) Expand $\sin^5 \theta \cos^3 \theta$ in series of sine multiple of θ	03
(c)	Evaluate the following limits:	04
	(i) $\lim_{x \to 1} (1 - x^2)^{\frac{1}{\log(1 - x)}}$ (ii) $\lim_{x \to 0} \frac{1}{\sqrt{x^2 - \cot^2 x}}$	
Q-3 (a)	(i) Evaluate $(1 + i\sqrt{3})^8 + (1 - i\sqrt{3})^8$	03
	(ii) Trace the curve $y^2(2a - x) = x^3$	04
(b)	(i) Find constants a, b, c so that $\lim_{x \to 0} \frac{x^{5}(a+b\cos x) - c\sin x}{x^{5}} = 1$	03
	(ii) Test the convergence of series $\frac{x}{2 \cdot 5} - \frac{x^2}{2^2 \cdot 10} + \frac{x^3}{2^3 \cdot 15} - \frac{x^4}{2^4 \cdot 20} + \cdots$	04

OR

Q-3 (a)	(i) Find the asymptotes of curve $x^2y^2 - x^2y - 5xy^2 + x + y + 5 = 0$	03
	(ii) Test the convergence of following series:	04
	(1) $\sum \left[\sqrt{n^2 + 1} - 1\right]$ (2) $\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \cdots$	

(1)
$$\sum \left[\sqrt{n^2 + 1} - 1\right]$$
 (2) $\frac{1}{1 \cdot 2} - \frac{1}{3 \cdot 4} + \frac{1}{5 \cdot 6} - \frac{1}{7 \cdot 8} + \cdots$
ind and plot all roots of $\sqrt[3]{8i}$ (03)

(b) (i) Find and plot all roots of $\sqrt[3]{8i}$ 03 (ii) Find the radius of convergence and interval of convergence of series 04 $-\frac{(x+2)}{1\cdot 2} + \frac{(x+2)^2}{2\cdot 2^2} - \frac{(x+2)^2}{3\cdot 2^3} + \frac{(x+2)^3}{4\cdot 2^4} - \dots$

SECTION II

Q-4 (a) State Euler's Theorem on Homogeneous Function01(b) Find the Maclaurin's series of
$$log(1 - x)$$
02(c) $a^{2}(w)$ 02

(c) Find
$$\frac{\partial(u,v)}{\partial(x,y)}$$
 for $u = x^2 - y^2$, $v = 2xy$ 02

(d) If
$$u = e^{xyz}$$
, find $\frac{\partial^3 u}{\partial x \partial y \partial z}$

Q-5 (a) (i) Prove that
$$\sqrt{(1 + \sin x)} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{48} + \frac{x^3}{48} + \frac{x^3}{48}$$

(ii) If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{z}{2}\frac{\partial u}{\partial z} = 0$ 03

(b) (i) Find the linearization of $f(x, y, z) = x^2 - xy + 3 \sin z$ at the point (2,1,0). 02 (ii) Use partial derivatives to find $\frac{du}{dx}$ if $u = \tan^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$, $x^2 + y^2 = a^2$ 03

(c) If
$$x = \frac{\cos \theta}{u}$$
, $y = \frac{\sin \theta}{u}$, evaluate $\left(\frac{\partial x}{\partial u}\right)_{\theta} \left(\frac{\partial u}{\partial x}\right)_{y} + \left(\frac{\partial y}{\partial u}\right)_{\theta} \left(\frac{\partial u}{\partial y}\right)_{x}$ 04

OR

Q-5 (a) (i) Find Taylor's series expansion of
$$f(x) = x^3 - 2x + 4$$
, $a = 2$
(ii) If $w = xy + yz + xz$, $x = u + v$, $y = u - v$, $z = uv$, find $\frac{\partial w}{\partial x} & \frac{\partial w}{\partial x}$ at $(u, v) = (\frac{1}{2}, 1)$ 03

(b) (i) Find the equation of tangent plane and normal line to the surface
$$02$$

 $x^2 + 2y^2 + 3z^2 = 12$ at the point $(1,2,-1)$

(ii) Discuss the continuity of
$$f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$
 at (0,0). 03

(c) If
$$u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}\right)$$
, find $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ and $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial x\partial y} + y^{2}\frac{\partial^{2}u}{\partial y^{2}}$ 04

Q-6 (a) (i) If
$$V = r^m$$
, where $r^2 = x^2 + y^2 + z^2$ then prove that
 $V_{xx} + V_{yy} + V_{zz} = m(m+1)r^{m-1}$
(ii) Expand $\tan^{-1}\left(\frac{y}{x}\right)$ in powers of $(x - 1)$ and $(y - 1)$ using Taylor's expansion.
04

- (b) (i) Find percentage error in area of an ellipse when errors of 2% and 3% are made in 03 measuring its major and minor axes respectively.
 - (ii) A soldier placed at point (3,4) wants to shoot the fighter plane of an enemy which is flying along the curve $y = x^2 + 4$ when it is nearest to him. Find such distance by using Lagrange's multipliers method.

OR

Q-6 (a)	(i) Expand $\sin^{-1} x$ up-to the first four terms by Maclaurin's series.	03	
	(ii) Show that $JJ' = 1$ for $x = e^{v} \sec u$, $y = e^{v} \tan u$	04	
(b)	(i) Find the extreme values of function $x^2y - xy^2 + 4xy - 4x^2 - 4y^2$	03	
	(ii) If $f(xy^2, z - 2x) = 0$, show that $2x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 4x$	04	
B**16****TECH****			

